Kemuliaan Manusia dan Perspektif Maqasid Syariah dalam Strategi Kesihatan Digital bagi Pencegahan HIV: ART Dan Prep dalam Era Kecerdasan Buatan (AI)
The Human Dignity and Maqasid Shariah Perspective in Digital Health Strategies for Hiv Prevention: ART and PrEP in the Era of Artificial Intelligence (AI)
DOI:
https://doi.org/10.55265/al-maqasid.v6i1.381Keywords:
Maqasid al-Shariah, HIV, PrEP, Digital Health, AIAbstract
This study examines the potential of Artificial Intelligence (AI) to enhance HIV prevention strategies in Malaysia, grounded in the principles of Maqasid al-Shariah. Given that HIV remains a persistent public health challenge, AI technologies such as predictive modelling, virtual counselling, and mobile health applications offer innovative approaches to improve early detection, optimize adherence to antiretroviral therapy (ART), and engage marginalized populations, particularly those impacted by stigma and discrimination. Through a qualitative analysis of biomedical evidence, Islamic jurisprudence (Fiqh), and AI ethical frameworks, this study demonstrates that the integration of AI aligns with core Shariah objectives, specifically Hifz al-Nafs (preservation of life), Dar’ al-Mafasid (prevention of harm), and Karamat al-Insan (preservation of human dignity). The findings underscore that successful implementation requires robust data governance, explainable AI mechanisms, and active collaboration with religious authorities to ensure cultural legitimacy and public trust. By synergizing technological innovation with Islamic ethical principles, Malaysia is positioned to emerge as a pioneer in AI-driven, faith-based healthcare, thereby accelerating progress toward ending the HIV epidemic while upholding human dignity and moral values.
Abstrak
Kajian ini meneliti potensi Kecerdasan Buatan (Artificial Intelligence, AI) dalam memperkukuh strategi pencegahan HIV di Malaysia, dengan berpaksikan prinsip Maqasid al-Shariah. Memandangkan HIV terus menjadi cabaran kesihatan awam yang berterusan, teknologi AI seperti pemodelan ramalan (predictive modelling), kaunseling maya (virtual counselling), dan aplikasi kesihatan mudah alih (mobile health) menawarkan pendekatan inovatif untuk menambah baik pengesanan awal, mengoptimumkan pematuhan terhadap terapi antiretroviral (ART), serta meningkatkan penglibatan golongan terpinggir, khususnya mereka yang terkesan oleh stigma dan diskriminasi. Melalui analisis kualitatif terhadap bukti bioperubatan, Fiqh (jurisprudens Islam), dan kerangka etika AI, kajian ini menunjukkan bahawa integrasi AI adalah selari dengan objektif utama syariah, khususnya Hifz al-Nafs (pemeliharaan nyawa), Dar’ al-Mafasid (pencegahan kemudaratan), dan Karamat al-Insan (pemeliharaan maruah insan). Dapatan kajian menegaskan bahawa pelaksanaan yang berkesan memerlukan tadbir urus data yang kukuh, mekanisme AI yang boleh dijelaskan (explainable AI), serta kerjasama aktif dengan pihak berautoriti agama bagi menjamin kesahan budaya dan kepercayaan awam. Dengan mensinergikan inovasi teknologi dan prinsip etika Islam, Malaysia berpotensi muncul sebagai perintis dalam penjagaan kesihatan berasaskan kepercayaan yang dipacu AI, sekali gus mempercepat usaha menamatkan wabak HIV sambil mempertahankan maruah insan dan nilai moral.
Downloads
References
Al-Qaradawi, Y. (1999). Fiqh al-awlawiyyat: The priorities in the light of the Qur'an and Sunnah. Cairo: Al-Wafa.
Al-Shatibi, I. (1997). Al-Muwafaqat fi usul al-shari‘ah (Vol. 2). Cairo: Dar Ibn ‘Affan.
European Commission. (2021). Ethics guidelines for trustworthy AI.
Hassan, N. (2024). Fatwa perspectives on PrEP in Malaysia: A comparative state analysis. Malaysian Journal of Syariah Studies, 32(2), 55–72.
Ibn Qayyim al-Jawziyyah. (1994). Zād al-Ma‘ād fi Hady Khayr al- ‘Ibad. Beirut: Mu’assasat al-Risalah.
Kairouz, P., et al. (2021). Advances and Open Problems in Federated Learning. Foundations and Trends in Machine Learning, 14(1–2), 1–210.
Kamali, M. H. (2002). The Dignity of Man: An Islamic Perspective. Cambridge: Islamic Texts Society.
Lim, W. Y., Wong, L. P., & Low, W. Y. (2023). Barriers to HIV care in Malaysia: Perspectives from key populations. BMC Public Health, 23(1), 1432.
Mahajan, A., Patel, S., & Kumar, R. (2024). Artificial intelligence in epidemiology: Opportunities and challenges in HIV prevention. Journal of Public Health Informatics, 16(2), e155–e168.Ministry of Health Malaysia. (2024a). Global AIDS Monitoring Report 2023. Putrajaya: MOH.
Ministry of Health Malaysia. (2024b). HIV prevention and condom use statistics 2023. Putrajaya: MOH.
Ministry of Health Malaysia. (2025a). HIV & AIDS surveillance report 2024. Putrajaya: MOH.
Mukherjee, S., Nambiar, D., & Rahman, A. (2023). Machine learning applications in HIV prevention: A systematic review. AIDS Care, 35(7), 912–925.
Nambiar, D., et al. (2020). Virtual reality interventions for HIV disclosure: A pilot study. Journal of Health Communication, 25(4), 289–298.
Omar, M., & Aziz, N. (2024). Islamic ethics in AI-enabled healthcare: Balancing innovation and morality. Malaysian Journal of Syariah Law, 12(1), 45–63.
Rahman, F., & Zain, M. (2025). Data as waqf: An Islamic legal framework for digital health governance. Philosophy & Technology, 38(2), 1–18.
Rosidi, M. H., Ismail, A. M., & Mokhtar, A. W. (2025). Analisis Pelaksanaan ART dan PREP dalam Membendung HIV: Perspektif Syariah. Journal of Fatwa Management and Research, 30(1), 174–198.
Sahih Al-Bukhari, Book of Medicine, Chapter: “Allah has not sent down any disease except that He has also sent down its cure, no. 5678.
Sunan Ibn Majah, Book of Legal Rulings, Chapter: One Who Builds on His Property Something That Harms His Neighbor, No. 2340.
Tan, L. S., Wong, Y. H., & Abdullah, N. (2025). Chatbot-based HIV prevention: A Malaysian pilot study. Asia-Pacific Journal of Public Health, 37(1), 55–66.
United Nations Programme on HIV/AIDS. (2024). Global AIDS update 2024. Geneva: UNAIDS.
Wang, L., et al. (2022). Predictive modeling for HIV patient adherence using machine learning. Journal of Biomedical Informatics, 128, 104041.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hasnizam Hashim, Muhammad Adib Hafiz Adam, Wan Abdul fattah Wan Ismail, Ahmad Syukran Baharuddin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






